Custom PC, Issue 193

Custom PC Issue 193My Hobby Tech column focuses this month on the Raspberry Pi 4, the amazingly inexpensive M5Stick-C microcontroller platform, and Zach Barth’s game design retrospective Zach-Like.

The column opens with the Raspberry Pi 4 review, a two-page look at the layout, features, functionality, and performance of the latest single-board computer from the Raspberry Pi Foundation. As always, there’s plenty of photography – including thermal imagery, using an in-house process I developed to get the most detail possible by combining visible light and infrared photography into a single print-resolution image.

My look at the M5Stick-C, part of the M5Stack family of products, needs no such clever photography – though there is a shot of the device on my wrist, thanks to a bundled watch strap mount. Designed around the low-cost ESP32 microcontroller the M5Stick-C includes buttons, a full-colour screen, Wi-Fi and Bluetooth connectivity, LEDs, a range of sensors, a built-in battery chargeable over USB Type-C, and the aforementioned watch strap plus a wall-mount bracket, LEGO-compatible mounting bracket, and even a built-in magnet – and all for under £10 excluding VAT. It may not be perfect, but it’s certainly cheap enough.

Cheaper, though, is Zach-Like, a collection of game design documents charting the early days of Zach Barth and his company Zachtronics. Initially available as a limited-run print edition on crowdfunding site Kickstarter, Zach-Like is now available as a free electronic download on Steam in PDF format – and comes with a huge selection of bonus content, including playable versions of several unreleased games and prototypes. At £10, Zach-Like would be a bargain; for free, it’s astonishing.

You’ll find the full column, and a lot more, in Custom PC Issue 193 at your nearest supermarket, newsagent, or on any one of a selection of digital distribution platforms.

HackSpace Magazine, Issue 16

HackSpace Magazine Issue 16This month’s HackSpace Magazine includes a pair of my reviews, the first looking at a computer that’s also a ruler – because that’s not only a thing but the second thing of its kind to come from the same designer – and a new set of charitable Top Trumps-style collectable cards.

First, the ruler-computer. Designed by Brads Projects, the Digirule2 is – as the name suggests – a second-generation design of a compact microcomputer which is also a functional ruler. Printed onto a single circuit board and built around a PIC32 microcontroller, the Digirule2 is inspired by the classic MITS Altair 8800: its memory is displayed on a series of LEDs, and is programmed one bit at a time using push-button switches.

Where the Digirule improves on the Altair, aside from being considerably more affordable and not taking up a huge chunk of your desk, is in having memory slots for saving and loading programmes. These slots come pre-loaded with demonstrations ranging from simple reaction games to a neat persistence-of-vision hack, while the edges of the board are printed with measurements – in binary, naturally – in both centimetres and inches.

The cards, meanwhile, are something a little less technical but no less geeky. Designed by 8bitkick and sold by the Centre for Computing History to fund its restoration and preservation works, the Games Consoles Collectable Cards partner high-quality colour images of classic videogame consoles with statistics that can be compared for a nerdy game of Top Trumps. They also partner well with the Home Computers Collectable Cards, an earlier release now repackaged to match, though sadly the two decks use different statistics and thus can’t be combined into a single mega-deck.

You can read both reviews, and a lot more beside, by picking up a copy of HackSpace Magazine Issue 16 from your nearest newsagent or by downloading a copy for free under a Creative Commons licence from the official website.

HackSpace Magazine, Issue 13

HackSpace Magazine Issue 13This month’s maker-focused HackSpace Magazine includes my relatively long-term review of an extremely clever, though far from perfect, temperature-controlled soldering ‘station’: the Miniware TS100.

First, some necessary definitions: brushing aside standard, fixed-power soldering irons, you’ll find adjustable-temperature and temperature-controlled irons on the market. The former are, typically, not much larger than a standard soldering iron and include a small knob on the body for adjusting the power and, thus, temperature of the tip. The latter go a step further, reading the temperature of the iron and using the feedback to dynamically adjust the power output to keep the tip as close to a chosen temperature as possible, and most often come with a bulky base station to which the iron is tethered.

The Miniware TS100, and its not-yet-available-in-the-UK successor the TS80, is different. While it’s a fully-fledged temperature-controlled iron, there’s no base station in sight: instead, the iron packs everything it needs into a surprisingly compact body, including a small OLED screen for live feedback and adjustment of its settings.

What’s most interesting about the design, though, is that the firmware that drives its internal microcontroller is open source. It’s entirely possible to download the source code, modify it, and flash it onto the iron with nothing more than a simple USB cable – and many have done that, producing alternative firmwares which either improve its performance or turn it into something else, including a Tetris-playing games console and a functional oscilloscope, entirely.

The TS100 is clever, then, but not perfect. A design which lacks any form of flaring to stop your fingers drifting forward onto the hot tip is one thing, but a larger problem is an ungrounded power design which leaves the tip floating at voltages more than enough to damage sensitive components. Thankfully, the reviewed unit came with a bundled grounding strap – but that leaves you with two wires rather than one, hampering the portability somewhat.

The full review can be read in the print and digital copies of HackSpace Magazine Issue 13, with the latter available for free download now under the Creative Commons licence from the official website.

Custom PC, Issue 182

Custom PC Issue 182In my Hobby Tech column this month, I take a look at the disappointing Planet Computers Gemini PDA, the significantly less disappointing Proto-Pic Program-o-Tron, and the recent updates designed to make the Raspbian operating system for the Raspberry Pi significantly more welcoming to newcomers.

First, the Gemini PDA. I’ve long been a fan of the clamshell personal digital assistant (PDA) form factor, and it was with a heavy heart that I finally hung up my Psion Series 5 after it became clear that smartphones had won that particular war. Now, the format is back courtesy of Planet Computers and the crowdfunded Gemini PDA – a design based on the Psion Series 5 and put together by one of the staff responsible for the original, but which misses its mark at almost every turn.

At its heart, the Gemini PDA is an Android smartphone – even the non-4G version, which is simply an Android smartphone with the cellular radio removed. While it’s possible to run a Debian-based Linux on top, the experience is poor – but, that said, no more poor than the buggy Android build supplied with the device, which insists on booting up in German despite being clearly marked as a UK model. The hardware, too, disappoints: performance under Linux is not where it should be, and while the keyboard is a near-perfect match to the original Psion design the clever sliding hinge mechanism is entirely missing in favour of a loose and flimsy metal kickstand that fails to provide nearly enough support.

Many thanks must go to the National Museum of Computing (TNMOC), which kindly provided an original Psion Series 5MX PDA for direct head-to-head comparison during the review.

The Program-o-Tron, after a disappointing start to the month, proved considerably better. Again crowdfunded, the Proto-Pic device is designed to make life easier for those working with Atmel ATmega microcontrollers. Rather than having to program each chip individually from a PC, the Program-o-Tron allows you to hold six hex files on an SD card and flash them onto a chip inserted in the ZIF socket at the push of a button – and, even better, to take a dump of the contents of a chip, including its fuse settings, to clone it without ever needing to touch the original program code.

Finally, the recent update to Raspbian operating system for the Raspberry Pi brought a couple of changes for the better: a lightening of the load when it comes to pre-installed software, complete with a tool to add packages back in on-demand, and a first-run welcome wizard which walks newcomers through configuring the Wi-Fi networking, localisation settings, and choosing a new password. The latter is particularly welcome: since launch, the default for Raspbian has been to keep the ‘pi’ and ‘raspberry’ username and password combination, making it easy for attackers to gain access to systems accidentally or deliberately connected to public networks. By asking users to choose a new password on first boot, the hole is closed.

To read more, pick up Custom PC Issue 182 from your nearest newsagent, supermarket, or digitally via Zinio or similar distribution platforms.

Custom PC, Issue 174

Custom PC Issue 174This month’s Hobby Tech column takes a look at a very special eight-byte – not a typo – microcomputer, walks through turning a spare Raspberry Pi into a Nav Coin-mining cryptocurrency machine, and looks forward to the launch of the ZX Spectrum Next with a look at a deep-dive book detailing the original Spectrum’s neat Ferranti Uncommitted Logic Array (ULA) chip.

First, the Mini C88. Designed by the multi-talented Daniel Bailey as a more affordable version of his C88, swapping the field-programmable gate array (FPGA) on which he implemented his own processor core design for an Arduino Zero and the extremely clever Dynamic Binary Translation (DBT) technique, the C88 is designed to be about as simple as a computer can get. Based on a custom instruction set, the C88 has just eight memory locations of eight bits apiece and is programmed by toggling each bit using a series of pleasingly tactile switches while monitoring the process on the 8×8 LED matrix that serves as its display.

For regular readers, this will all sound familiar: the original FPGA-based C88 and its 32-byte bigger brother the C3232 were the subject of an interview back in Issue 155. While Daniel has still not turned the C88 into a kit you can head out and buy, the Mini C88 is definite progress in that direction – and, as always, anyone interested in the project should hassle him about it on Twitter.

For those with a Raspberry Pi and a desire to play with cryptocurrency, meanwhile, this month’s tutorial will be of definite interest: a guide to turning a Pi into a ‘Stake Box’ for the Nav Coin cryptocurrency. Designed as an alternative to Bitcoin, Nav Coin offers those who run network nodes rewards in the form of a five percent return on their coin holdings when locked up in this manner. Taking less than an hour to set up and requiring nothing more than a low-powered computer, it’s a great way to get involved – and the Nav Coin project itself definitely one to follow.

Finally, while waiting impatiently for my ZX Spectrum Next microcomputer to land – which, I’m pleased to say, has since happened – I enjoyed a re-read of Chris Smith’s excellent The ZX Spectrum ULA: How to Design a Microcomputer. Based on interviews and deep-dive analysis, the book investigates the tricks and techniques which allowed Sinclair Computers to build the ZX Spectrum micro at such a bare-bones cost – which, in turn, was thanks to clever use of an Uncommitted Logic Array (ULA) chip from Scottish electronics giant Ferranti. Effectively a write-once version of the modern FPGA, Ferranti’s ULA saw the number of components in the ZX81 drop to a quarter compared to the ZX80 and is key to how the ZX Spectrum does what it does.

For all this, and a bunch of other interesting things by people who aren’t me, pick up a copy of Custom PC Issue 174 from your nearest supermarket, newsagent, or digitally via Zinio and similar services.

Custom PC, Issue 173

Custom PC Issue 173This month’s Hobby Tech column takes a look at the learn-by-post Tron-Club Electronics Kits, the excellent Core Memory, and revisits one of the biggest disappointments of the year: the Asus Tinker Board.

First, the re-review. I originally tested the Asus Tinker Board – or Tinkerboard, or TinkerBoard, depending on which piece of documentation you’re reading – back in Issue 164 when it first hit the market. At the time, the device was impossible to recommend: the top-end hardware, capable of outperforming even the latest Raspberry Pi 3 against which it is designed to compete, was let down by woeful and unfinished software. Nine months on, I decided to give Asus a second chance and load the latest software to see if anything had improved – and I’m pleased to say that many, though far from all, of the issues I had back in March have been addressed.

The Tron-Club Electronics Kits, meanwhile, are smart subscription packages supplied monthly with a claimed minimum of 21 circuits in every pack. Based around discrete components in the Basic Kits and a microcontroller in the Advanced Kits, I was lucky enough to receive a sample of both from Bit-Tech forumite Byron Collier who had finished with them himself.

Finally, Core Memory. Continuing my trend to buy coffee table books despite not actually having a coffee table, I picked up Mark Richard and John Alderman’s book – subtitled “A Visual History of Vintage Computers” – a few years ago, and while it’s now out of print it is still readily available from Amazon and other retailers and, frankly, well worth the cash, despite a few errors in Alderman’s supporting text.

All this, and the usual collection of things written by people who aren’t me, is available from your nearest newsagent, supermarket, or electronically via Zinio and similar digital distribution platforms.

 

PC Pro, Issue 279

PC Pro Issue 279This month’s PC Pro includes a review of something a little out of the ordinary: the open-source, microcontroller-powered OpenScope MZ oscilloscope from Digilent.

Based on the original OpenScope and manufactured following a highly successful crowdfunding campaign, the OpenScope MZ is designed primarily for education and hobbyist use. While it lacks the bandwidth you’d need for professional use, it makes up for it in ease of use: it can be connected to your wireless network for tangle-free operation, includes cables which mate handily with the 2.54mm headers common to hobbyist electronics, and uses cross-platform software capable of running on everything from a powerful desktop to a low-end smartphone.

Better still, the OpenScope MZ is, as the name implies, open: the hardware design, firmware, and software are open source, allowing anyone with the knowledge to add features or customise the device as they see fit.

More information on the OpenScope MZ is available on the official website, while you can read my review in full by picking up a copy of PC Pro Issue 279 from your nearest newsagent, supermarket, or digitally via Zinio and similar services.

PC Pro, Issue 277

PC Pro Issue 277This month’s issue of PC Pro includes a four-way Battle Royale of DIY handheld games consoles, starting with the MAKERbuino and Creoqode 2048 also reviewed in this month’s Custom PC and including the original Gamebuino and Arduboy to complete the round-up.

There’s never been a higher focus on teaching kids to program – not even during the height of the microcomputing boom in the 1980s, when every home had a Spectrum and every school a BBC Model B partially funded by the government’s Computers in Schools initiative – but there’s a risk of turning kids off if all they’re doing is moving sprites around on a screen. To address this, a number of inventors have come up with physical devices to target instead: from the BBC micro:bit, the spiritual successor to the original Acorn-designed BBC Micro, to the handheld consoles in this month’s group test.

Each of the consoles on test have two things in common. The first is obvious: the focus is more on writing your own games, rather than just playing things other people have created. The second lies under the hood: all four consoles on test are based on Atmel microcontrollers and are compatible with the popular Arduino IDE programming environment.

There are more differences than similarities, though. The Creoqode 2048 is the most physically impressive – and imposing – machine on test thanks to its large footprint and bright RGB LED display, but falls down with poor supporting documentation and rebranded off-the-shelf parts sold at a massive markup; the Arduboy is, by contrast, the tiniest on test with a wallet-friendly design but limited capabilities. The Gamebuino has long been one of my favourite Arduino-compatible projects, but the MAKERbuino takes the concept a stage further with small hardware improvements and a shift from a pre-assembled unit to a solder-it-yourself kit using entirely through-hole components.

If you want to know which device walks away as the king of the hill, though, you’ll have to pick up the latest issue of PC Pro either physically at all good newsagents and supermarkets or electronically via Zinio and similar distribution services.

Custom PC, Issue 170

Custom PC Issue 170This month’s Hobby Tech column has a particular focus on do-it-yourself handheld gaming, looking at two Arduino-compatible yet totally different kits: the Creoqode 2048 and the MAKERbuino. As an added bonus, there’s also a review of a set of Arlent-brand soldering iron tips coupled with a lesson on just why keeping your tips in tip-top condition is so very important.

First, the Creoqode 2048. Initially produced following a successful crowdfunding campaign, London-based Creoqode has since improved and expanded the original 2048 design. Built around a hefty 64×32 RGB LED matrix display, the laser-cut chassis is eye-catching but not pocket friendly in any sense of the word: the entire unit is the largest handheld I’ve seen since the 1980s and you won’t get change from £200 once you’ve added shipping to the sky-high £189 asking price.

If Creoqode had done a better job of putting the kit together, that pricing could be overlooked. Sadly, the design is a mishmash of off-the-shelf parts – including a Mega2560 Pro Mini microcontroller, entirely unmodified save a cheeky change to the silkscreen to plaster the Creoqode logo where it most definitely does not belong – with some of the most awkward wiring imaginable. Worse still, the solder-free assembly turns out to be misleading: the use of too-thin cables in the battery holder means you’ll need to whip out a soldering iron and effect your own repairs if you want your console to do anything other than reset itself after a few minutes of use.

The MAKERbuino, by contrast, couldn’t be more different. Created as a soldering kit variant of the open-hardware Gamebuino, reviewed back in Issue 134, the MAKERbuino is a fraction of the price but infinitely more usable. Like the Gamebuino, the MAKERbuino loads its games from a bundled SD Card – whereas the 2048 is limited to a single ‘game’ (in reality incredibly basic demonstration of its capabilities, provided for some reason as Microsoft Word documents rather than INO files) which can only be swapped out by connecting it to a computer. The MAKERbuino also benefits from the incredible Gamebuino community, built up over the years since its launch, with dozens of available games and a great quality framework for building your own.

The Arlent-brand soldering iron tip review came about as I was preparing to build the MAKERbuino kit and spotted that the tip on my soldering station was somewhat past its prime. If you’ve ever found your soldering skills appearing to worsen, rather than improve, over time, then you’re probably the victim of an ageing tip. At less than a tenner for ten tips of varying shape and size from supplier Persder, they were definitely worth a shot – and I’m pleased to say have been performing admirably since.

All this, and the usual raft of interesting stuff written by other people, can be found at your nearest supermarket, newsagent, or digitally via Zinio and similar services.

Custom PC, Issue 164

Custom PC Issue 164My Hobby Tech column this month is dominated by two reviews of devices which have taken their inspiration from better-known alternatives, but the two couldn’t be more different: the Asus Tinker Board and the SiFive HiFive1. As an added bonus, there’s a look into the wonderful world of hobbyist pinball machine repair, and by that I mean a friend and I repaired some pinball machines and lived to tell the tale.

First, the Tinker Board. There have been rumours flying around since last year that Taiwanese technology giant Asus was looking to carve itself off a slice of the Raspberry Pi pie, and that’s exactly what the Tinker Board is: an attempt to clone the Raspberry Pi. Its footprint and layout are so close to the original that it’s entirely possible to use official Raspberry Pi cases without difficulty, and the features available are a one-for-one match: four USB ports, an Ethernet port, Bluetooth and Wi-Fi, a 3.5mm jack, CSI and DSI connectors, and even the Pi’s trademark 40-pin GPIO header.

To its credit, Asus has tried to improve upon the original design. The processor is more powerful – quite impressively so, I discovered in my testing – and purportedly supports 4K video playback, the Ethernet supposedly gigabit, there’s support for 24-bit 192KHz high-definition audio, the RAM has been boosted from 1GB to 2GB, and the GPIO port has received colour coding to its pins. Sadly, many of these claims fell short during testing: the Ethernet port’s throughput is sub-100Mb/s even when connected to a gigabit switch, the 4K video playback simply doesn’t work, and the GPIO port is useless for anything save basic on-off pin switching – there’s no I²C, no SPI, no 1Wire, no UART, nothing, with all advanced features simply listed as in-the-works.

The SiFive HiFive1, by contrast, delivers on its promises and more. Designed to mimic the footprint and layout of an Arduino Uno microcontroller, the HiFive1 is notable for the chip at its heart: one of the first off-the-shelf implementations of the open-source RISC-V (pronounced “risk five”) architecture. Still in its relative infancy compared to Atmel’s AVR or Intel’s x86 architectures, RISC-V is designed to scale from microcontrollers like SiFive’s through to high-efficiency server systems.

Like the Tinker Board, I ran into a few hiccoughs during testing. Unlike the Tinker Board, they were all quickly addressed. Considering the HiFive1 is only the second major product from SiFive and is the first commercial implementation of the RISC-V architecture to include support in the Arduino IDE for easy programming, I was thrilled with the board – and sad when my time with it came to an end.

Finally, pinball machines. The last page of this month’s column details my visit to the Brew Haus in Bradford with my friend Stuart Childs, but rather than being there for the beer we were there to administer some love to a series of pinball machines the owner had recently installed – one of which, a Data East Star Wars table, was entirely non-functional and missing its keys to boot. Between picking the lock to gain entry, replacing the somehow-shattered bumpers, testing the electronics, and discovering the PSU was hanging by a thread – its screws, interestingly, being attached to the magnet of a nearby speaker – a fun time was had and a working table set up by the end of the evening.

To get the full low-down on all these topics, plus a whole lot of interesting stuff written by people who aren’t me, head to your local newsagent, supermarket, or other magazine outlet, or pick up a virtual copy via Zinio or similar digital distribution services.